Глубокое обучение: готовые решения

📖 Глубокое обучение: готовые решения

Технология глубокого обучения не настолько сложна, как многие считают. До недавнего времени на ее изучение уходили годы, но с появлением таких фреймворков, как Keras и TensorFlow, инженеры-программисты, не имеющие опыта в данной области, могут быстро начать создавать рабочие приложения. Благодаря готовым примерам, приведенным в книге, вы научитесь решать задачи, связанные с классификацией и генерированием текста, изображений и музыки. В каждой главе описывается несколько решений, объединяемых в единый проект, например приложение, реализующее тренировку музыкальной рекомендательной системы. Также имеется глава с описанием методик, которые в случае необходимости помогут выполнить отладку нейронной сети. Все примеры написаны на языке Python и доступны в виде набора блокнотов. Основные темы книги: Использование векторных представлений слов для вычисления схожести текстов Построение рекомендательной системы фильмов на основе ссылок в Википедии Визуализация внутренних состояний нейронной сети Создание модели, рекомендующей эмодзи для фрагментов текста Повторное использование предварительно обученных сетей для создания службы обратного поиска изображений Генерирование пиктограмм с помощью генеративно-состязательных сетей (GAN), автокодировщиков и рекуррентных сетей (RNN) Распознавание музыкальных жанров и индексирование коллекций песен Давид Осинга - опытный инженер-программист, ранее работавший в Google, основатель трех стартапов. Ведет популярный сайт программных проектов, посвященный в том числе машинному обучению.

О книге

автор, издательство, серия
Издательство
Вильямс
Серия
Несерийные
ISBN
978-5-907144-50-7
Год
2019