📖 Проблема Борсука
Брошюра написана по материалам лекции, прочитанной автором 4 декабря 2004 года на Малом мехмате МГУ для школьников 9-11 классов. В ней рассказывается об одной из знаменитых задач комбинаторной геометрии - гипотезе Борсука, которая утверждает, что в п-мерном пространстве всякое ограниченное множество можно разбить на п + 1 часть меньшего диаметра. Вначале подробно анализируются случаи малых размерностей и доказывается, что при п=1, 2, 3 гипотеза верна. Далее приводятся различные оценки сверху для числа Борсука в зависимости от размерности. Кроме того, рассматривается связь гипотезы с другими проблемами и задачами комбинаторной геометрии (проблема освещения, задача Грюнбаума, задача о хроматическом числе). В заключительных главах рассматриваются контрпримеры к гипотезе Борсука и история понижения минимальной размерности, в которой строится контрпример, а также улучшения оценки снизу. Многие главы снабжены задачами. Некоторые из них - это упражнения, прорешав которые, читатель...
О книге
автор, издательство, серия- Издательство
- МЦНМО
- Серия
- Математическое просвещение
- ISBN
- 978-5-4439-0163-3
- Год
- 2015